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SIMPLE DEMONSTRATION OF
TIME-REVERSAL INVARIANCE IN
CLASSICAL MECHANICS*

Frank S. Crgwfdrd

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

The principle Of, time-reversal invariance can bé sir'x}ply and
vividly demonstrated by>the successive elastic collisions of two
stéel ball bearings of different mass, suspended as the bobs of
two equal-length pendulums. (I discovered this accidentally while
piayipg with an apparatus I designed to demonstrate something
entirely different. ) |

‘Time -reversal _inva.ria.nce1 can be descx"ibed as follows. ‘A N
system of particles in some initial state [ i] undergpes a dynamic
process that carries it at some later time to a final state [ f].

The state [i] is given in terms of the positions and momenta of

all the particles at the initial time. Similarly for the final state

. [ £f]. The dynamic process involves the interactions of the parti-

cles. Suppose we take a moving picture of this process [ i] ~[1].
Project fhis on the screen so that we see a visual representation
of the process [ i] —{ f] . At the instant that the picture reaches

[ £], reverse the direction of the motion of the film through the
projector. On the screen we then see the particles at the same
positions as in [ £] , but with all momenta reversed. Call this

"' the timé-reversed final state,' designated by | Tf] As the
projector plays backwards we see the dynamic process apparently

unfold in the backwards direction, carrying the time-reversed
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final state to a similarly time-reversed initial state:

[ Tf] - [ Ti] . 1)
Now suppose that we prepare the actual system of particles so as
to be in the state [ Tf] that would have thé same aﬁpeara.nce as
t f] , but with all momenta reversed. Then we let the interactions
of .the particles‘take over. Will the subsequent »dy}nazni;: process
carry the system‘ to [ T1] ? If so, the appearance of the p_rocesé
will be exa_:ctly; as that of the revers'e&projector motibn that gave
us Eq. (1) ;)n the screen. If Eq. (1) holds for the actual process
we say thaé the interaction is inw}ariant'ﬂnder the operation of time
reversal, :c:>r satisfies time-reversal invariance.

Newtoiz;“s laws guarantee that a process that invqives elastic
collisions i,:etween a system of particles‘satisfies time-reversal
invariance. However, this invariance is difficult to demonstrate
because it is practically impossible to prepare the staté [ Tf] if
there are many particles. Therefore we confine ourselves, at
first, to two particles.

The collisions between the two particles must be elastic. -
Otherwise there.'ar e actu.a.lly many particles involved, the energy
gets "' degraded"' ‘into heat, and time-reversal invariance cannot .
be demonstrated because of the practical impossibility on preparing
the state [ Tf].

An unsatisfactory demonstration is to observe the elastic col-
lision of two equ'ay,llmasses. The time-reversed final state [ Tf]
is easy to prepare, but it is too closely related to the initial state.
In fact [ Tf] is simply equal to the initial state [ i] as seen from

a different observation position, or as seen from the same position
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with the entire apparatus rotated by 180° about a vertical axis.
Then the time-reversed process is just a trivial repetition 6f the
original process from a different viewpoint. To obtain a non-
trivial demonstration of time-reversal invariance we must con-
sider the elastic collision of two unequal masses.

The problem of preparing the time-reversed state [ Tf] is
neatly solved by attaching the unequal masses to strings so as to
have two simple one-dimensional pendulums of equal length. The
two unequal masses are hung so that at equilibrium they barely
touch. They are then displaced in opposite directions by arbitrary

unequal amounts to initial positi'ons from which they are simul-

taneously released from rest. (A pa’,rticularly simple configuration

is to displace only one mass from equilibrium.) Because of the
remarkable property of the simple pendulum, that its period is
independent of the méss and of the amplitude (for sufficiently small
amplitudes), the two masses reach their equilibrium point simul-
taneously. Their velocities and momenta are unequal. Call this
the state [ i]. Then they undergo an elastic collision. (Steel ball
bearings are sufficiently elastic.,)v After the collision the two ball
bearings have nontrival new momenta, and are .in state [ f]. Next
the pendulum motion takes over. The two particles rise to new
positions, come to rest simultaneously, reverse their motions,
and arrive simultaneously back at the equilibriurh point. Just
before they collide for the se.cond time .they are at the same posi-
tions as they were in [ f], but with reversed momenta. They are
thus in the time-reversed state { Tf], and all because of that

remarkable property of a simple pendulum! Therefore the second
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collision should carry them to the time-reversed initial state

| Ti], provided time-reversal invariance holds for the collision

- process. After that the pendulum motion carries them back to

the original positions from which they were originally released
from rest. They arrive there simultaneously. Then the whole
process repeats.

It works! Time-reversal invariancé becomes visible! I
start with a commercial pendulum to-y2 consisting of five equal-
mass ball bearings each cemented to two threads which are hung
from two parallel rails so that the balls are constrained to swing
in a plane. I hang four of the balls out of the way. I take a thread
of the correct length, cement its center with Epoxy cement to a
smaller ball bearing, attach two bent-wire hooks to the thread
ends, and suspend the hooks from the rails so that the small ball
bearing is at the same height as the remaining large ball, and

’

barely in contact with it at their equilibrium positions. I tape
the hooks to the rails so they won't slide.

Perhaps the most spectacular demonstration is where one of

" the balls is initially in its equilibrium position and the other is

displaced and released from rest. Aftef the first collision and
the time reversal of [ f] by the pendulum action the two balls are
both in motion approaching each other with different velocities.
Then a psychologically most unexpected thing happens. After the
second collision one of the balls is at rest! Because of the
asymmetry—different size balls, different velocities —this is
startling. One is not accustomed to seeing time reversal in
action! It is fascinating to watch the whole complicated-appearing

process repeat itself every two collision. The ear readily records

S
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the sharp ' clicks' of the collisions and one sees the process re-
peated every two clicks. Because of inelasticity the whole system
gradually comes to rest, but it is easy to see time reversal in
action for half a dozen complete cycles of two clicks eaéh.

Next we come to something new which was extremely startling
to me at first, and took me d_.ay‘s to understanq. I decided to see
what would happen with three balls. I took down one of the‘ balls
I had previously hung out of the way, so that I had now three balls
altogether, two equal balls from the original toy and the one

smaller ball I had added. All three balls hung at equilibrium

barely in contact, the two large ones contacting each other and the

smaller one contacting one of the large ones. I pulled back the

small ball and let it go. I expected that after one click I would see

some complicated pattern, but that, by analogy with my experience

~ with two balls, I would observe the return of the system after two

clicbks to its original conﬁguratibn; then’ the entire process would
repeat every two clicks: Instead, to my a.mazemént, it took four
clicks for 'the process to repeat! (Each click is a three-body
collision. The fact that all three bodies- do not collide precisely
siﬁmltaneously cannot be distinguished by éar or eye.) By slight
adjustment of the position of the hooks supporting the small ball,

I later found that if I set the small ball so that .it was separated by
a millimeter from the nearest large ball I could get the process
to repeat every two clicks as originally expected. But by slightly
moving the small ball so that it was not only in contact but slightly
'""leaning' on the nearest large ball I found I could get the proc.e’ss

to repeat every four clicks, or six clicks, or eight or ten clicks!
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What is happening here? Experimentally it is striking and unam-
biguous to every observer. The configurations of the three
moving balls remain complicated until suddenly, after say four

or six clicks (always an even number! )} the original simple con-
figuration miraculously recurs. Then th;z whole process repeats,
always with the same even number of clicks per repetition cycle.
To changeAthe number of clicks per repetition:one moves the i
hooks a tiny amount.. The only cycle that is easily reproduced at
will is that for two clicks.. Before.I give my explanation I invite
the-reader to cover up the remainder of this note and think about
the problem.

V My explanation is that: Each click is actually two unresolved
collisions, since it is impqssible for all three balls to collide
precisely simultaneously. In the first click the small ball, call
it s, first hits the nearest large ball, Li' then the large ball Li
hits the adjoining large ball LZ' After that, L1 is at rest (because
its mass is equal to thatlof' Lz)l_and L2 is in motion. Next the
pendulum motion takes over, so that L, and s swing out; stop,
reverse, and return to initiate the sevt':c'm,d click.—the second three-
body collision. It is now absolutely c'rucial which collision takes
place first, that between L2 (moving) and Li (at rest) or, instead,
that between s (moving) and L1 (at rest). If s has been hung

so it does not quite touch L,1 at equilibrium then s will reach

the collision a little late. In that case the LZ—L1 collision occurs
first. That interchanges the momentum of L2 and Li’ bringing
L, to rest. Then L1 and s have the time-reversed motion they

acquired after the first collision of the first click. They now
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collide, bringing L1 to rest, and s to its time-reversed initial
motion. Now L2 and L1 are at rest. The small ball s swings out
to its initial position, and the entire process is ready to repeat
itself. Thus the entire process repeats itself every 2 clicks,
which means, actually, every four collisions. The second click
is the time reverse of the first.

Now consider what happens if s is hung so as to lean against

L, at equilibrium. The two collisions of the first click proceed in

1
the same order as described above, leaving L1 at rest and L2 and
s in motion. They sﬁng out, reverse, and return for the second
click. This time s gets back a little early, colliding with the
resting Li' That is the same kind of gollision s made during the

‘first click, so that s recoils and swings out the same way it did
the first time. Similarly, L1 now has the same motion it had after
the first collision of the first click, and it goes on to collide with

L But this time L2 is not at rest! In fact it has equal and

2
opposite velocity to Li' They collide in the second collision of
the second click, interchanging their momenta. Thus after the
second click, s and L, are moving in the same direction, and

I, is moving in the opposite direction with momentum magnitude

2
equal to that of Li' The system has not returned after two clicks
to its original configuration! What happens now? - That depends
on the order of the two collisions in the third click! It is possible
for the third click to be the time reverse of the second click.
That will be the case if L2 and L1 collide first. (They collided

last in the second click, so must collide first to obtain the time-

reversed click.) If L2 and Li also collide first in the fourth
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click, then the entire first two clicks will have been time reversed
in the third and fourth clicks, and the entire process repeats
every four clicks (eight collisions). However if, in the third
click, s and L1 collide first, then the time-reversal process
(the rﬁnning backwards of the movie projector! ) has not yet
started, and it; will be at least six clicks before the entire process
repeats. Indeed, if s and L1 continue to collide first, the time-
reversed process will never occur! = Even if, during some click,

L2 and L1 collide first, there is no guarantee that the entire

process up to that time will now unfold in the time-reversed order.

Sometimes a repeating subcycle of two or four or six clicks is
observed, where the original initial condition is never recovered,
but a new configuration becomes the effective initial condition.
Such a subcycle must consist of a certain sequence of collisions
followed by the time-reversed sequence. Such subcycles must
therefore have an even number of clicks. And they do!

It would be nice to take a movie of a six-click cycle, make
a time-reversed copy of the film so the clicks occur in order
6,5,4,3,2,1, and then project the two films simultaneously in
slow motion so that the time-reversed 6 goes with forwards 1,
reversed 5 with forwards 2, and reversed 4 with forwards 3.
If these two projections looked the same, that would verify that

the last half of the cycle is precisely the time reverse of the first

half.
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Footnote and References

*This work was supported by the U. S. Atomic Energy Com-
mission.

1. For a beautifully written discussion of the role of time re-
versal in claésical physics and in elementary particle physics,
see Robert G. Sachs, Science ﬁ_é', 587 (12 May 1972).

2. Pendulation, North f’aciﬁc Products Co., Bend, Oregon.
Found in many toy and gift éhops.

3. Actually, this was done for me by Hagop Hagopian and Ronald
Coverson. The ai)paratus they built for me had a sequence of
gradually decreasing suspended masses in contact, and was in-
tended to demonstrate impedance matching in the transfer of
energy between a large and a small 'ball. While playing with this
I noticed the time-reversal effect, which excited me more than
the original demonstration.

4. While writing this note it occurs to me that a quicker method
of constructing the apparatus might be to start with the toy (Ref.2)
and simply cement two of the masses together. However, this
apparatus would not have the flexibility that led to my discovery
of the complex time-reversal phenomena discussed in the last

part of this note.
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